Viewing file: structs.py (6.27 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
from __future__ import annotations
import itertools from collections import namedtuple from typing import ( TYPE_CHECKING, Callable, Generic, Iterable, Iterator, Mapping, NamedTuple, Sequence, TypeVar, Union, )
KT = TypeVar("KT") # Identifier. RT = TypeVar("RT") # Requirement. CT = TypeVar("CT") # Candidate.
Matches = Union[Iterable[CT], Callable[[], Iterable[CT]]]
if TYPE_CHECKING: from .resolvers.criterion import Criterion
class RequirementInformation(NamedTuple, Generic[RT, CT]): requirement: RT parent: CT | None
class State(NamedTuple, Generic[RT, CT, KT]): """Resolution state in a round."""
mapping: dict[KT, CT] criteria: dict[KT, Criterion[RT, CT]] backtrack_causes: list[RequirementInformation[RT, CT]]
else: RequirementInformation = namedtuple( "RequirementInformation", ["requirement", "parent"] ) State = namedtuple("State", ["mapping", "criteria", "backtrack_causes"])
class DirectedGraph(Generic[KT]): """A graph structure with directed edges."""
def __init__(self) -> None: self._vertices: set[KT] = set() self._forwards: dict[KT, set[KT]] = {} # <key> -> Set[<key>] self._backwards: dict[KT, set[KT]] = {} # <key> -> Set[<key>]
def __iter__(self) -> Iterator[KT]: return iter(self._vertices)
def __len__(self) -> int: return len(self._vertices)
def __contains__(self, key: KT) -> bool: return key in self._vertices
def copy(self) -> DirectedGraph[KT]: """Return a shallow copy of this graph.""" other = type(self)() other._vertices = set(self._vertices) other._forwards = {k: set(v) for k, v in self._forwards.items()} other._backwards = {k: set(v) for k, v in self._backwards.items()} return other
def add(self, key: KT) -> None: """Add a new vertex to the graph.""" if key in self._vertices: raise ValueError("vertex exists") self._vertices.add(key) self._forwards[key] = set() self._backwards[key] = set()
def remove(self, key: KT) -> None: """Remove a vertex from the graph, disconnecting all edges from/to it.""" self._vertices.remove(key) for f in self._forwards.pop(key): self._backwards[f].remove(key) for t in self._backwards.pop(key): self._forwards[t].remove(key)
def connected(self, f: KT, t: KT) -> bool: return f in self._backwards[t] and t in self._forwards[f]
def connect(self, f: KT, t: KT) -> None: """Connect two existing vertices.
Nothing happens if the vertices are already connected. """ if t not in self._vertices: raise KeyError(t) self._forwards[f].add(t) self._backwards[t].add(f)
def iter_edges(self) -> Iterator[tuple[KT, KT]]: for f, children in self._forwards.items(): for t in children: yield f, t
def iter_children(self, key: KT) -> Iterator[KT]: return iter(self._forwards[key])
def iter_parents(self, key: KT) -> Iterator[KT]: return iter(self._backwards[key])
class IteratorMapping(Mapping[KT, Iterator[CT]], Generic[RT, CT, KT]): def __init__( self, mapping: Mapping[KT, RT], accessor: Callable[[RT], Iterable[CT]], appends: Mapping[KT, Iterable[CT]] | None = None, ) -> None: self._mapping = mapping self._accessor = accessor self._appends: Mapping[KT, Iterable[CT]] = appends or {}
def __repr__(self) -> str: return "IteratorMapping({!r}, {!r}, {!r})".format( self._mapping, self._accessor, self._appends, )
def __bool__(self) -> bool: return bool(self._mapping or self._appends)
def __contains__(self, key: object) -> bool: return key in self._mapping or key in self._appends
def __getitem__(self, k: KT) -> Iterator[CT]: try: v = self._mapping[k] except KeyError: return iter(self._appends[k]) return itertools.chain(self._accessor(v), self._appends.get(k, ()))
def __iter__(self) -> Iterator[KT]: more = (k for k in self._appends if k not in self._mapping) return itertools.chain(self._mapping, more)
def __len__(self) -> int: more = sum(1 for k in self._appends if k not in self._mapping) return len(self._mapping) + more
class _FactoryIterableView(Iterable[RT]): """Wrap an iterator factory returned by `find_matches()`.
Calling `iter()` on this class would invoke the underlying iterator factory, making it a "collection with ordering" that can be iterated through multiple times, but lacks random access methods presented in built-in Python sequence types. """
def __init__(self, factory: Callable[[], Iterable[RT]]) -> None: self._factory = factory self._iterable: Iterable[RT] | None = None
def __repr__(self) -> str: return f"{type(self).__name__}({list(self)})"
def __bool__(self) -> bool: try: next(iter(self)) except StopIteration: return False return True
def __iter__(self) -> Iterator[RT]: iterable = self._factory() if self._iterable is None else self._iterable self._iterable, current = itertools.tee(iterable) return current
class _SequenceIterableView(Iterable[RT]): """Wrap an iterable returned by find_matches().
This is essentially just a proxy to the underlying sequence that provides the same interface as `_FactoryIterableView`. """
def __init__(self, sequence: Sequence[RT]): self._sequence = sequence
def __repr__(self) -> str: return f"{type(self).__name__}({self._sequence})"
def __bool__(self) -> bool: return bool(self._sequence)
def __iter__(self) -> Iterator[RT]: return iter(self._sequence)
def build_iter_view(matches: Matches[CT]) -> Iterable[CT]: """Build an iterable view from the value returned by `find_matches()`.""" if callable(matches): return _FactoryIterableView(matches) if not isinstance(matches, Sequence): matches = list(matches) return _SequenceIterableView(matches)
IterableView = Iterable
|